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INTRODUCTION:

Palpation by clinicians is an effective examination frequently performed for breast cancer detection and
monitoring treatment. The most common symptom of breast cancer is a lump, and studies show that the
majority of breast cancers are found by palpation. The primary goal of this project is to develop a tactile
mapping system that can quantitatively measure the location and applied forces in breast palpation, and the
tactile features of detected breast lumps. By combining the knowledge of vision based neural networks, tactile
sensing technologies are integrated for the investigation of soft tissue interaction with tactile/force sensors,
where the hard inclusion (breast lump) can be characterized through neural network learning capabilities,
instead of using a simplified complex biomechanics model with many heuristic assumptions. Through a
nonlinear soft tissue analysis by the neural network, the system can accurately characterize and document breast
lumps. These maps will serve as an objective documentation of palpable lesions for future comparative
examinations. Limited laboratory experimental evaluation has been conducted to collect preliminary data that
will form a full-scale Task II res€arch plan. Our considerable efforts in the Task II are

e To evaluate the sensitivity and reproducibility of the TMD system based on the feedback from the
model-based laboratory evaluation and preliminary expert evaluation. A
To design suitable neural network based intelligence system for tactile signal interpretation
To develop a training algorithms and computer interpretation codes.




BODY:

In the first year of this award, we have conducted a
systematic study to adapt new tactile sensing technologies to

- the needs of improving physical breast examination, to gather
~ preliminary data regarding potential clinical applications, and
to advance the fundamental understanding of palpation. We

established that an existing tactile sensor array and related
force measurement technologies could be modified
specifically for use as a tactile mapping device (TMD) and
could be adapted for robotic medical sensing applications
[3,4,5]. We applied the TMD to various educational models,
which allowed the collection of sufficient tactile images.

In the second year of this award, we have taken the feedback
from the expert evaluation into our considerations in
designing neural network-based intelligence system. Our goal
is aimed at the development of an intelligence system to
estimate and track changes in tumors over time during

diagnosis and treatment. The precise relationship between

tactile quantities and the breast texture and abnormalities is
complex. Our approach to this problem is to build on tactile
signal processing algorithms developed for robotics
applications, which relates measured surface stresses to
shapes of contact. To analyze tactile abnormalities with
computational intelligence, we have designed neural network
bases to 'accurateiy estimate and track changes in tumors over
time.

The precise relationship between the mounted tactile
quantities and the breast texture and abnormalities is
complex. Some work has recently appeared on this inversion
problem for palpation applications, but the success of this
approach is limited because it relies on gross force
information rather than the pressure distribution information
that will be provided by our tactile array. sensors. We have
previously developed signal processing algorithms for this
purpose, which can be modified to map the sensor
measurements to the structure of the breast lump [22,27].
This approach will provide a better understanding of breast
palpation and establish a basis for constructing refined

palpation devices. Our main contribution in the field of

medical image analysis is in the development of vision type
neural networks, fractal imaging, contextual segmentation,
and advanced pattern recognition techniques.
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We have put considerable effort on the development of the convolution neural network (CNN) and its
associated training methods. Figure 3 shows the typical structure of CNN. The structure of the CNN is a
simplified version of “neocognitron,” which simulates the network structure and signal propagation in
vertebrate animals. The structure of the CNN is used as one of the fundamental research tools of the proposed
research. We found that the performance of the CNN is more powerful than a regular fully connected neural
network, such as the Multilayer perceptron (MLP) neural network, in disease pattern recognition.

The Soft tissue analysis for the characterization of palpable breast lesions requires:

(1) The quantitative measurement of applied forces and tactile images of pressure distribution during
palpation,

(2) The construction of the tactile featured database and training algorithms, and » :

(3) The estimation of key tactile parameter values associated with detected lesions through a neural network
based soft tissue modeling and analysis.
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Figure 2. System block diagram of prototype TMD.

During the experiments, the forces/torques applied by the human examiner during the palpation are recorded in
terms of six force parameter values: Fx, Fy, Fz, Mx, My, Mz. The TMD is used to acquire various tactile
images, by palpating the site after the examiner locates the lesion by initial hand palpation. Since the
relationships between the tactile images and lesion characteristics are expected to be complex and nonlinear, we
believe that the inverse problem (extraction of lesion characteristics from tactile images) can be solved when
sufficient tactile information is acquired. As a result, for each lesion, after pushing the TMD against the breast
to achieve certain level of force, the examiner rotates the TMD to five different orientations at each of which the
information about the forces/torques and tactile image are simultaneously recorded. OR1 is the initial
orientation of the TMD after being pushed by the examiner to a certain level of force. OR2, OR3, OR4 and OR5
are the TMD orientations after it is rotated forward, backward, left and right, respectively. Figure 2. shows the
prototype of the tactile mapping system, where an 8x8 tactile sensor array and a 6DOF force/torque sensor is
employed. In order to demonstrate the effectiveness of the tactile mapping device for the characterization and
documentation of detected lumps, intensive experiments have been conducted to pilot-test the sensitivity and
reproducibility of the system in measuring the applied forces and pressure profiles due to lumps. Examining the
graphical displays in Figure 5.b and 5.c in comparison with that of the case with no lesions (Figure 5.a), we
noticed that a peak consistently occurred in the display. We can draw preliminary conclusions that a peak in the
graphical display indicates the existence of a lesion. The output from our TMD will be used as an input for our
neural network. - '
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A convolution neural network (CNN) based soft tissue modeling and analysis technique is developed to
estimate lesion sizes and depth, shown in Figure 4, where each input denotes a cluster corresponding to the
tactile image of one force projection, and each hidden cluster extracts appropriate tactile features to highlight
mass characteristics. The CNN outputs consist of two sets of signals: parameter estimates, and reconstructed
tactile profiles.

In neural network based mass detection, we collected the output from our TMD used the output as inputs to our
neural network. We separated our database into two sets; one set will be used for training, and the remaining set
will be used for testing. This database was used to train two neural network systems:

(1) A conventional 3-layer back propagation neural network

(2) A CNN training method

The error back propagation algorithm trained both neural network systems by feeding the features from the
nput layer, and registering the corresponding target value at the output side. Once the training of the neural
networks is complete, we will then use the remaining sets for the testing.

Local Ful _
connection connect: p )\ Estimate of mass
size
H
Hidden ; Estimate of mass
ALz N . location
TRAINING ! 7
DATA Input '
, TARGET
Cluster : OUtPUt IMAGE

Figure 3. (?onvoiuﬁon neural network (CNN) based breast tumor characterization and parameter estimation
wh'ere the inputs are the tactile images and associated applied angles and forces, and the outputs are the
estimated size and depth of the lump and associated probability of being a tumor. ‘

INPUT DATA

Inputs: Estimate of mass
~Tactile images location
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Figure 4. Shows the outputs from our TMD will be used as an input to our convolution neural network based
breast tumor characterization and parameter estimation. '
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We applied several image processing and training methods designed to zmmlc a physician’s. in‘terpretation‘using
the breast lump database. The TMD will be evaluated by physicians, and will unfiergo a limited evaluaﬁo.n. of
diagnosis and documentation using simulations. Clinical evaluations will be carried out tmder the supervision
of Dr. Matthew Freedman. In particular, we will evaluate the sensitivity, accuracy, and precision of the tactile

sensors during simulated CBE applications.

(a) () (©)

Figure 5. The graphical dispiays of tactile sensor.

KEY RESEARCH ACCOMPLISHMENTS:

Our key goal of Task II is to develop a neural network based intelligence system that estimates and tracks the
changes (in size and depth) of the tumors over time after diagnosis and during treatment to develop a neural
network. Our accomplishments in Task II are the following:

o By taking the feedback ﬁ*em experts, we have evaluated the TMD’s performance in improving diagnosis
in terms of precision, sensitivity, and specificity. We have re-designed a prototype TMD system based
on the feedback from the model-based laboratory evaluations, and preliminary expert evaluations.

¢ We have designed a suitable neural network-based intelligence system for tactile signal interpretation.
By combining the knowledge of vision-based neural networks, tactile sensing technologies are
integrated for the investigation of soft tissue interactions with the tactile/force sensor, where hard
inclusions (breast lump) can be characterized through neural network learning capabilities

* We have developed neural network training algorithms and computer interpretation codes, convolution
neural network (CNN) based breast tumor characterization and parameter estimation; the inputs are the
tactile images and associated applied angles and forces; the outputs are the estimated size and depth of
the lump and associated probability of being a tumor. .
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REPORTABLE QUTCOMES:

e R :Sﬁkanchana, K. Huang, J. Xuan, M. Freedman, and Y. Wang, “Mixture of Principal Axes
Registration for Change Analysis in Computer-Aided Diagnosis,” 30" Applied Imagery Pattern
Recognition Workshop, Washington, DC, October 2001.

* R. Srikanchana, Y. Wang, C. C. Nguyen, and M. Freedman, “Tactile Imaging of Palpable Breast
Cancer,” Proc. SPIE Medical Imaging, vol. 4682, San Diego, CA, February 2002.

e R. Srikanchana, J. Xuan, M. Freedman, and Y. Wang “Mixture of principal axes registration: a neural
computation approach,” Proc. SPIE Medical Imaging, vol. 4684, San Diego, CA, February 2002

e Presented the paper “Mixture of 'Principal Axes Registration for Change Analysis in Computer-Aided
: Diagnosis,” 30" Applied Imagery Pattern Recognition Workshop, Washington, DC, October 2001.

* Presented the poster “Tactile Mapping and Tumor Modeling for Breast Cancer Detection,” The third
Era of Hope meeting for the Department of Defense (DOD) Breast Cancer Research Program (BCRP),
Orlando, FL, September 2002.

CONCLUSIONS:

This project is concerned with the detection of lumps in breast palpation using a tactile mapping device (TMD)
system. It presented the main components of the TMD and explained their operations. Experiments were
conducted on a breast model to detect different types of lumps. Experimental data showed that the peak in the
display of pressure distribution of the TMD indicated the presence of a lump. The knowledge of vision-based
neural networks and tactile sensing technology are integrated for the first time for investigations of soft tissue
interactions with the tactile/force sensor; the hard inclusion (breast cancer) can be characterized through neural
network learning capabilities, instead of using a simplified complex biomechanics model with many heuristic
assumptions. Tactile mapping systems using convolution neural networks and tactile sensing arrays can extract
mvariant properties of the detected breast lump, and make it possible for the first time to quantitatively and
objectively record the processes and findings of a breast palpation. With the proven power of nonlinear signal
processing using both convolution neural networks (CNN) and multi-layer perceptron (MLP), we expect that
the tactile parameters associated with the lesions (i-e., the size and depth of the lesion) can be estimated more
accurately than those by the conventional approaches using the first principle of engineering.
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Mixture of Principal Axes Régistratien for Change Analysis in Computer-Aided

Diagnosis

Rujirutana Srikanchana', Kun Huang!, Jianhua Xuan!, Matthew Freedman?, and Yue Wang?
*Department of EE/CS, The Catholic University of America
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Abstract

Non-rigid image registration is a prerequisite for many
medical image analysis applications such as image fusion
of multi-modality images and quantitative change analysis
of a temporal sequence in computer-aided diagnosis. By es-
tablishing the point correspondence of the extracted feature
points, it is possible to recover the deformation using non-
linear interpolation methods such as the thin-plate-spline
approach. However, it is a difficulty task to establish exact
point correspondence due to the high complexity of nonlin-
ear deformation existed in medical images. In this paper,
a mixture of principal axes registration (mPAR) method is
proposed to resolve the correspondence problem through a
neural computational approach. The novel feature of mPAR
is fo align two point sets without needing to establish ex-
plicit point correspondence. Instead, it aligns the two point

sets by minimizing the relative entropy between their prob- -

ability distributions resulting in a maximum likelihood es-
timate of the transformation matrix. The registration pro-
cess consists of> (1) a finite mixture scheme to establish an
improved point correspondence and (2) a multilayer per-
ceptron neural network (MLP) to recover the nonlinear de-
Jormation. The neural computation for registration used a
committee machine to obtain a mixture of piece-wise rigid
registrations, which gives a reliable point correspondence
using multiple extracted objects in a finite mixture scheme.
Then the MLP is used to determine the coefficients of a poly-

nomial transform using extracted cross points of elongated

structures as control points. We have applied our mPAR
method to a temporal sequence of mammograms of a single
patient. The experimental results show that mPAR not only
improves the accuracy of the point correspondence but also
results in a desirable error-resilience property for control
point selection errors.

1 Intreduction

Image registration is an essential step for many medical
image analysis applications such as image fusion of multi-
modality images and quantitative change analysis of a tem-
poral sequence in computer-aided diagnosis. Due to com-
plicated by misregistrations caused by patient motion and
physical change, the estimation of transformational geom-
etry from two point sets is an essential step to medical im-
age fusion and coraputer vision [1, 2]. The task is to re-
cover a matrix representation requiring a set of correspon-
dence matches between features in the two coordinate sys-
tem [3]. Assume two 3-D data point sets {p;4} and {p;z};
£=1,2,..., N are related by '

p§5=Rpm+T'§-Ni~ (1}

where R is a rotation matrix, T is a translation vector, and
N; is a noise vector. Given {p;4} and {p;z}, Arun ez. al
present an algorithm for finding the least-squares solution
of R and T, which is based on the decoupling translation
and rotation and the singular value decomposition (SVD) of
a3 x 3 cross-covariance matrix [3]. -

The major limitation of the present method is twofold:
(1) while feature matching methods can give quite accu-
rate solutions, obtaining correct correspondences of fea-
tures is a hard problem, especially in the cases of images
acquired using different modalities or from inter-subjects;
and (2) a rigidity assumption is heuristically imposed while
those newly developed deformable matching methods can
be computationally expensive and typically need good ini-
tial guesses to assure correct convergence [2, 4]. One pop-
ular method that is correspondenceless is the principal axes
registration (PAR) [1], that is-based on the relatively stable
geometric properties of image features, i.e., the geometric
information contained in these stable image features is often
sufficient to determine the transformation between images
[2]. Once again, it cannot handle the cases with non-rigid
objects. . ;

We present a neural computation based non-rigid reg-
istration using piece-wise rigid transformation. The novel




feature is to align two point sets without needing to estab-
lish explicit point correspondences, where the derivation is
realized by minimizing the relative entropy between the two
point distributions resulting in a maximum likelihood esti-
mate of the transformation matrix. That is rather than using
a single transformation matrix which give a large registra-
tion error, we attempt to interpolatively apply a mixture of
transformations. By further generalizing PAR to a mixture
of principal axes registration (mPAR) scheme, with soft par-
titioning of the data set, the mixture is fit using expectation-
‘maximization algorithm, to estimate the transformational of
the orthogonal set of eigenvalues and eigenvectors of the
auto-covariance matrix. By applying a committee machine
to a non-rigid registration, we can acquired the registration
based on a mixture of piece-wise transformations of the data
set. Then the correspondences control points are obtained.
As a final step, the warped image is obtaining using the neu-
ral network based non-linear mapping, to obtain the poly-
nomial transform based on extracted control points using
multilayer perceptron neural network.

2 Method

_ Suggested by information theory [5], we note that, since
the control point sets in two images can be considered as

two separate realizations of the same random source, we

do not need to establish point correspondences to extract

the transformation matrix. In other words, if we denote by

Pip,} the distribution of the control point set in an image,
we have the simple relauanslup

P tpie} = P {Rpy+T} T € V)

where ¢ is the noise component. Since the probability dis-
tributions can be computed independently on each image
without any need to establish feature correspondences, and
given the two distributions of the control point sets in the
two images, we can recover the transformation matrix in a
simple fashion [2] In order to establish feature correspon-
dence between the two images, we applied our segmenta-
tion method to extract the control points between two im-
ages. After the control has been established, we applied our
- registration method to the images, as we now sketch.

2.1 Control Point Extraction

Assume that each pixel in the MR image can be decom-
posed into pixel images z and context image I. By ignoring
imformation regard.mg the spatial ordering of pixels, we can
treat context images as random variables and describe them
using a multinomial distribution with unknown parameters
Tk, k= 1,..., K, which can be interpreted as a prior proba-
bility of pixel labels determined by the global context infor-
mation. In particular, based on the statistical properties of

MR pixel images, where pixel image is defined as the ob-
served gray level associated with the pixel, use of Standard
Finite Normal Mixture (SFNM) distribution is justified to
model the image histogram by determining the optimal pa-
rameters with respect to a distance measure of a sum of the
following general form:

K
fr(@) = meo(zluy, oF)

k=1

K
withzwk=1,7rk20,and
k=1

( (IE /ch) )

(ol 03) = —
A\Z|fy, '\/i—
where p, and o} are the mean and variance of the kth
Gaussian kernel, and 7 is the global regularization pa-
rameter. We use K to denote the number of Gaussian
components and r to denote the parameter vector. This
tissue quantification is achieved through three completely
unsupervised steps: (1) parameter initialization by optimal
histogram quantization; (2) model estimation by histogram
based fast expectation-maximization (EM) algorithm; and
(3) model selection by minimum description length (MDL)
criterion. It is shown that the SFNM model converges to
the true distribution when the pixel image are asymptoti-
cally independent [18].

After we obtain the optimal parameters for all compo-
nents, we use a multiple thresholding procedure for ini-
tializing image segmentation based on maximum likelihood
(ML) principle, which is followed by contextual Bayes re-
laxation labeling (CBRL) algorithm to obtain a consistent
labeling solution based on localized SFNM formulation for
improving initial segmentation by usmg neighborhood text
regularities.

We define the component in locahzed SFNM by the sup- .
port function:

exp(— E )

pi)?
2a,c,c )

Si(k) == \/27
where 1r,(:‘) is the local conditional prior of regions, the
support function S;(k) is a function of the component (tis-

sue type) k. Then tissue segmentation is interpreted as the
satisfaction of a system of inequalities as follows:

Si(l;) = Si(k)

forall kand fori = 1,..., N, where l;,i = 1, ..., N is the
context images, and a consistent labeling is defined as the
one having maximum support at each pixel simultaneously.
We further define the average local consistency measure:
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to link consistent labeling to global optimization[19].

2.2 Registration

For observation of the distributions, we can estimate R
and T by minimizing the relative entropy (Kullback-Leibler
distance) between Py, .} and Py 4+T}- The least rela-
tive entropy estimator is then defined as

-argmin D(Pyp || Pirp,,+73) - ®

where D denotes the relative entropy measure. Following
the same strategy to decoupling translation and rotation as
in [3], we can deﬁne a new data point by Qia = pisa — P%
and q;p = p;p—p%. where p and p are the centroids of
{Pia} and {p;z} respectively. Then the optimal geometric
transformations, R and T, are defined as

R =UpHU’, and T =p} - Rp!, @)

whe:re the superscript ¢ denotes matrix transposition, U4
and Up are 3 x 3 orthonormal matrices, and His 2 3 x 3
diagonal matrix with element h,, = 1/Anp/Ans. Note
that the transformation U consists of the orthonormal set of
eigenvectors and k., is the squared root of the eigenvalues
Am of the auto-covariarice matrix C form = 1,2, 3 and for

{p:ia} and {p;5}, respectively.

However, because of its global hneanty, the application :

of PAR is necessarily somewhat limited [6]. An alternative
paradigm is to model 2 multimodal control point set with a
collection of local linear models. The method is a two-stage
procedure: a soft partitioning of the data set followed by es-
timation of the principal axes within each partition [7]. Re-
cently there has been considerable success in using standard
finite normal mixture (SFNM) to model the distribution of
a multimodal data set and the association of a SFNM dis-
tribution with PAR offers the possibility of being able to
register two images through a mixture of probabilistic prio-

cipal axes transformations [7]. Assume that there are K
- control point clusters, where each control point cluster de-
fines a transformation {Ry, T }. Thus for a point p,.4, its

new locations con'espcndmg to each of the transformations

are pox = Ripng + Ty for k = 1, ..., K. Further assume
that the control point set defines a SFNM distribution

flpe) = Z m(pz #a> Cr) )

k=1 :
where g is the Gaussian kernel with mean vector y, and
auto-covariance matrix Cy, and 7y is the zmx.mg factor pro-
portional to the number of control points in cluster k. For

each of the control point sets {p;4 } and {pip}, the mixture
is fit using the expectation-maximization (EM) algorithm.
The E step involves assigning to the linear models respon- -
sibilities from the control points; the M step involves re-
estimating the parameters of the linear models in the light
of this assignment [7].

Thus the statistical membership of point p,4 belonging
to each of the control point clusters can be derived by

Tkag(Pnallixa, Cra)
7(ons) ©

i.e., the posterior probability of {R; T} given ppa. Thus,
we can define the FMR transformation as

Znk = P(Ri, Tklpna) =

Ko

Prn= Zznkpnk = Z Mg(p;z;r:; - Cﬁ)‘{RF:PnA'i‘Tk)‘
k=1
™

where {Rg, Ty} is determined based on f(p;) =
zi{iz 7. g(P:|#x, Cx) that we have estimated in the pre-
vious step using the EM algorithm. Note that now we do
need the correspondences between the two control point
clusters, and these correspondences may be found, after a
global PAR is initially performed, by using a site model
supported approach. or a dual-step EM algorithm to unify’
the tasks of estimating transformation geometry and identi-
fying cluster-correspondence matches [4]. This philosophy
for recovering transformational geometry of the non-rigid
objects is similar in spirit to the divide-and-congquer princi-
ple [6], under which the relative entropy between the two
point sets reaches its minimum

arg min D(Pp,}||P, Z"° m(akpﬁ’rk)}) ®

both globa}ly and locally.

Based on a mixture of probabilistic principal axes trans-
formations, the next section describes 2 neural computation
using a committee machine approach for which a complex
computational task is solved by dividing it into a number of
computationally simple tasks and then cornbining the solu-
tions to those tasks.

2.2.1 Neural Computation

A neural network interpretation of the EM algorithm is
given in [8]. Because of its reputation of being slow in
which new information acquired in the expectation step is
not used immediately, on-line versions of the EM algorithm
are proposed for large-scale sequential leaming. Thus, we
adopt a fully unsupervised and incremental stochastic learn-
ing algorithm. The scheme provides winner-takes-in prob-
ability (Bayesian “soft”) splits of the control points, hence
allowing the data to contribute simultaneously to multiple
clusters which results in
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fork = 1,...,Ko and for {pis} and {p;p}, respectively,
where a(z) and b(¢) are introduced as the learning rates, two
sequences converging to zero, ensuring unbiased estimates
after convergence. This procedure is termed as neural com-
putation of the EM algorithm, where at each complete cycle
of the algonthm, we first use “old” set of parameter val-
ues to determine the posterior probabilities Z(i+1)k- These
posterior probabilities are then used to obtain “new” val-
ues 7r('+1) , p("H) C("H) The algorithm cycles back and
forth unnl the value of relative entropy between the data
histogram and mixture model reaches its minimum

arg min  D(Pp,yilf(p:)) (13)

1
+ Ak (12)

for {pia} and {piz}, respectively.

With a soft partitioning of the data set using Egs. (9-12),
control points will now effectively belong to more than one
cluster spatially. Thus, the effective input values are py =
Zik (Pi — p4,) for an independent registration transformation
k in the committee machine [9]. We then extend our adap-
tive principal components extraction (APEX) algorithm to
a probabilistic version, i.e., PAPEX [10], to detcrmme Uy
for {pia} and {p;p}, respectively.

Consider the modular network nature of Eq. (7), itis a
mixture of local expert model, in which the individual re-
sponses of the experts are nonlinearly combined by means
of a single gating network. It is assume here that the differ-
ent experts work best in different regions of the input space
in accordance with the probabilistic generative model. In
our case, the effective input values are pi; = z; (pi — )
for an independent registration transformation k in the net-
works. A committee machine consists of k supervised mod-
ules, with a soft partitioning of the data set using EM al-
gorithm called experts, and an integrating unit called a gat-
ing network that performs the function PAPEX to determine
the transformation of the orthogonal set of eigenvalues and
eigenvectors of the auto-covariance matrix among the ex-
pert networks. The output of our committee machine is a
transformational matrix of image pair. Based on those cor-
respondences between the two images, the control points

Figure 1. A pair of real mammograms taken
over a period of time from the same patient.

are obtained. The final step is to calculate the polynomial
transformation using piece-wise interpolation. In our case
for a given cormresponding control points pair of the image,
we considered neural network based MLP to recover the
nonlinear deformation. The final result shows the warped
image that has been corrected by applied our neural com-
putation to correct most of the scale different between the
images. '

3 Results and Discussion

We applied our algorithm to 2 temporal sequence of
mammograms of a single patient [15]. In this example,
the committee machine is used to obtain an initial registra-
tion using multiple extracted objects (skinline, dense tissue
regions) in a finite mixture scheme. Then MLP was used to
determine the coefficients of a polynomial transform using
extracted vertical and horizontal cross points of elongated
structures as control points. Previously, thin-plate spline
(TPS) was used to determine the transform coefficients [13].
As a comparison, we consider both results here. Figure 1
shows the raw sequence and Figure 2 shows the resulting
warped image for MLP (left) and TPS (right). Using im-
age difference (Figure 3) we see that the most of the scale
different between images has been corrected by using MLP.
While the TPS distorts the image, this distortion can be at-
tributed to control point selection and correspondence. The
MLP better adapts to the error present in the control points
thus yielding a smoother result.

*We applied our approach for the non-rigid registration
of contrast-enhanced breast MRI. A 3D breast MRI scan is
acquired prior to the injection of contrast agent, followed
by a sequence of 3D breast MRI scans after the agent has
been applied. The goal of image registration in contrast-
enhanced breast MRI is to relate any point in the post-
contrast enhanced sequence to the pre-contrast enhanced



Figure 2. The result of warped current image
to previous image (left: MLP; right: TPS). ‘

Figure 3. Image difference (left: MLP; right:
TPS)

Figure 5. A pair of a contrast-enhanced in
MRI (Left: pre-contrast image; right: post-
contrast image.)

reference image. After we performed a pre-registration us-
ing PAR method to correct the global alignment between
images, we applied our segmentation algorithm to extract

 the control objects between two images. Figure 4 shows

the segmentation of Fibro-tissue. Next, we applied the pro-
posed non-rigid registration to these images using the con-
trol objects that has been acquired by the segmentation. Fig-
ure 5 shows a pre- and post-contrast enhanced image of the
patient data set with a propose registration method. Figure
6 shows the post-contrast enhanced image and correspond-
ing difference images after registration. The results demon-
strate that the simple image differencing can isolate such
area.

4 Conclusions

In this paper, we presented the theoretical concepts and
methods of a neural computation based non-rigid registra-
tion algorithm for computer-aided diagnosis. The approach
uses a committee machine to recover the total transforma-
tional geometry of the non-rigid object using multiple rigid
transforms combined together in 2 mixture of principal axes
registration scheme. Finite mixture transform combination

- is a novel technique to combine multiple transforms that are

contained in a single image. Other than local transforms no
other method combines multiple transforms together. In ad-




Figure 6. Difference image to hlghhght en-
hanced area.

dition finite mixture combinations, yields a smooth image
while local transforms yield an image containing discon-
tinues on transform boundaries. In addition, the registra-
tion obtained in the committee machine is fine tuned using
a non-linear transform generated by a MLP network using
extracted control points.

We applied our non-rigid algorithm to a temporal se-
quence of breast image of a single patient. Some distortion
can be seen in the final warped images because of the er-
ror in control point selection and correspondence. Improve-
ment is this portion should decrease distortion and yield
a smoother looking image. Using neural networks in this
problem has increased the generality of this approach by
allowing the algorithm to adjust performance as imaging
condition change.
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Tactile Imaging of Palpable Breast Cancer

Rujirﬁtaaa Srikanchana®, Yue Wang®, Matthew Freedman?, énd Charles C. Nguyen®

“Department of Electrical Engineering and Computer Science,
The Catholic University of America, Washington, DC 20064, USA
Department of Radiology, _ C
Georgetown University Medical Center, Washington, DC 20007, USA

ABSTRACT

This paper presents the development of 2 prototype Tactile Mapping Device (TMD) system comprised mainly
of a tactile sensor array probe (TSAP), a 3-D camera, and a foree/torque sensor, which can provide the means
to produce tactile maps of the breast lumps during a breast palpation. Focusing on the key tactile topology
features for breast palpation such as spatial location, size /shape of the detected lesion, and the force levels used
to demonstrate the palpable abnormalities, these maps can record the results of clinical breast examination
with a set of pressure distribution profiles and force sensor measurements due to detected lesion. By combining
the kmowledge of vision based, neural networks and tactile sensing technology; the TMD is integrated for the
investigation of soft tissue interaction with tactile/force sensor, where the hard inclusion (breast cancer) can
be characterized through neural network learning capability, instead of using simplified complex biomechanics
model with many heuristic assumptions. These maps will serve as an objective documentation of palpable lesions
for future comparative examinations. Preliminary results of simulated experiments and limited pre-clinical
evaluations of the TMD prototype have tested this hypothesis and provided solid promising data showing the
feasibility of the TMD in real clinical applications. .

Keywords: T actile Mapping Dévice, Tactile Sensor Array Probe, force/torque sensor, breast palpation, breast
cancer, tactile imaging. » :

1. INTRODUCTION

Physical breast examination is an effective and completely non-invasive method for the detection of breast

. cancer.!3 With a lump as the most common symptom of breast cancer, studies show that the majority of breast

g Y cancers was found by palpation which complements mammography, since palpation can evaluate breast tissue
near the chest wall and axilia that is not accessible to mammography.® In addition, studies have found that as

many as. 12-15% of cancers that were detected by physical examination were not apparent on mammograms.®-3

Unfortunately, breast palpation has been hampered by problems inherent in its subjective nature, leading
to difficulty in interpreting and documenting the examiner’s impressions of the perceived lump in terms of
tumor characteristics.® For example, a physician may determine that a palpable suspicious abnormality needs
continued monitoring. This requires maintaining a record of the examination results, which at present is limited

, to verbal netes about parameters such as the position, size, and hardness of the lump. Because it is difficult to
e verbalize tactile sensations, the subjective and arbitrary nature of these notes makes effective follow-up exams
problematic. )

We have conducted a study to advance fundamental understanding of palpation and solve these practical
problems through the creation of a new tactile mapping device (TMD). This device will measure three key
variables during palpation: the examiner’s search patterns, the applied forces, and the small-scale pressure
variations at the skin due to lumps. We have integrated and pilot-tested a prototype TMD consisting of a
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novel three-dimensional (3-D) camera that can track finger motion and breast deformation in video speed,

a six degree-of-freedom (DOF) force/torque sensing device measuring the applied forces, and a novel pressure
distribution sensor array that can image tactile profile of lumps.* The primary objective aims that (1) new tactile
mapping technology can quantitatively measure the location and applied forces in breast palpation, and the
tactile features of detected breast lumps; and (2) new device can accurately characterize and document breast
lumps and will improve clinicians’ ability to monitor changes in Jump across time and possibly to distinguish
malignant from benign lumps. From a set of “images” of the suspect mass, a neural network supported pattern
analysis system will extract the invariant properties of the lump, such as the depth and size, based on a nonlinear
model of sensor-tissue interaction with hard inclusions. This TMD system will make it possible for the first
time to quantitatively and objectively record and characterize the processes and findings of breast palpation.
While initially the system will be used to perform clinical breast examination, we believe that eventually it may
be used in breast self-examination by women through tele-home care %5

2. SYSTEM OVERVIEW

The goal of this research is to extend the range and resolution of breast palpation methods, thus increasing
palpation sensitivity and specificity (i.e, the ability to detect lumps and distinguish clinically significant changes).
Using 3-D camera, force sensor, and tactile arrays, we can create reproducible tactile maps (or images) of the
palpable abnormalities of the breast. The novel 3-D camers is able to provide real-time 3-D motion measurement
(for tactile probe) and surface profile measurement (for breast tissue deformation) at a rate of 30 frames per
second. We have further integrated and evaluated related sensing technologies including tactile sensor array
and six DOF force/torque sensor to extract tactile information from breast palpation, where the sensor-tissue
interaction of detected palpable lesion can be quantitatively measured and displayed in terms of tactile images.
Our laboratory experiments aimed at characterizing the simulated tumors in breast phantom have demonstrated
that palpable inclusions can be located to within 1 mm.

Our prototype system incorporates a 3-D Rainbow camera, a tactile sensor array probe, a breast model with
simulated lumps, a force/torque sensor on which the breast model is mounted, and a graphical user interface
(GUI). Figure 1 shows a block diagram of the tactile mapping device system to be used for measurement of
palpable abnormalities in the laboratory. In a typical task, upon detecting a suspicious lump, the examiner will
bring the TSAP into contact with the tissue at the palpation site. For a thorough tactile mapping procedure, this

.. involves 3D positioning the probe through the camera facing the site. The resulting pressure distribution across

the probe surface is measured by a Tactile Sensor Array Probe (TSAP) with associated readout electronics.
Multiple tactile images with various force levels and torque angles will be required for the lesion characterization.
A computer processes the signals to generate appropriate output for visual display on a monitor or raw data to
the physician’s office through a telecommunication channel. Below, we describe the components of the tactile

mapping system.

2.1. 3-D Rainbow Camera

For the accurate positioning of the TSAP, a novel 3-D rainbow camera is adopted in our system, which is suitable
for this high-speed 3-D machine vision application. Figure 2 shows the rainbow camera and the acquired sample
range image. It exploits a color light projector to illuminate the object in the scene and using an off-the-shelve
color‘camera to obtain a full-frame color image of the scene. The color of the projecting light with spatially
continuously varying wavelength is encoded with information of the corresponding projection angle. Each pixel
of the color image is associated with a unique ray through the focal point of the camera. Since the angle
between camera axis and the ray is known the resulting angle-side-angle triangulation problem can be easily
solved-when the distance between the light projector and the camera is fixed. Thus, using only one camera,
the full frames of 3-D range images can be obtained directly at the camera frame rate. The spatially varying
wavelength light is generated by a white light passing through a linear variable wavelength filter. We have
performed experiments to investigate the actual range accuracy and the major error contributors. The results
show that the 3-D profile of test artifacts were less than 1 mm. The spatial resolution of the system is limited
only by the spatial resolution of the camera optical sensing element and is currently able to provide at least
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Figure 2: Three-dimentional range image of the breast mode] by the Rainbow camers.
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Figure 1: System block diagram of prototype TMD.




L : Py
Y . N [
> /— e ——

Figure 3: A drawing of a tactile array sensing (adapted from Son 1996).

1024x1024 pixel resolution. When a palpation site is determined, several 3-D range images wﬂl be acquired to
record the site mformahon

2.2. Tactile Sensor Array Probe (TSAP)

The core component of the TMD is a highly sensitive tactile sensor array probe. Figure 3 illustrates the -

operation of the capacitive tactile array sensor used in this system. It shows a drawmg of the array with the

copper layers and the silicone rubber spacers, which is based on the design by Fea.rmg -and Howe.4 The array”»j R
is composed of two crossed layers of copper strips separated by thin strips of silicone rubber.% Each crossing = . .-
area forms a capacitor, and when a force is applied onto where the strips cross, the dlstance between the stnps R
decreases and the capacitance increases.” Specially designed electronics will. measure the capaczta.nce of each

element and relate the capacitance change to the force applied to each element. By measu.rmg the capacxta.nce' R
variations from all the elements simultaneously, we can determme the spat1a.l dJstnbutmn of pressure a.cross the'. R

sensor array.

Figure 4 shows a photograph of a commercial prototype TSAP. The sensor a.rray is made w1th an mexpenmve":
photolithography and etching process and can be easily attached to a variety of probe shapes. In this prototype
specification, it is composed of an eight by eight tactile sensor with elements that are 4 mm on a side. The__

sensor is mounted on a plastic brass backing plate with a surface that has been machined into a section of a
square. The backing plate is 5.08 cm on a side and the effective sensing area is 3.20 cm on a side. We decided
to make the sensor flat in order to minimize inhomogeneity because the resulting pressure distribution should
have a uniform overall signal to noise ratio. The tactile images will then be consistent when used for various
breast/ chest background textures. The spatial resolution of the tactile array is 4 mm long where the smallest
masses that we are currently interested to characterize are on the order of 1 cm in diameter. Smaller elements
would increase spatial resolution at the cost of lower coverage area and low sensitivity since the capacitance is
proportional to the element area.” The tactile sensor has been shielded to provide electronic insulation.

2.3. Force/Torque Sensing:System

The relationship between the hard inclusion (i.e., lump) and the percieved tactile image from the TSAP is
nonlinear and complex. In order to characterize and later extract the tactile features. of the detected breast
Iumps, the TMD operation requires that the forces/torques exerted by the operator of the TSAP on the breast
model be measured together with the corresponding tactile images. It would be ideal if a force/torque sensor
were to be mounted between the wrist and the hand of the operator. Since it is problematic and impractical
to mount a force/torque sensor in such a configuration, we decided to mount it under a base which the breast
model is placed on. The forces/torques acquired by the sensor in this configuration can be transformed to those
exerted by the operator via proper coordinate transformation. Figure 5 shows a breast model laying on a round
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Figure 4: A commercial prototype tactile array sensor probe.
g e

Figure 5: JR® Force/Torque Sensor.

base under w?q:{ch‘a JR3 force/torque is mounted. The JR3 force/torque mainly consists of a JR3 méﬁoﬁfhic -

six DOF force sensor and a JR® Intelligent Support System, Comprised of boards for signal conditioning, data

acquisition and processing. A computer program was written in Visual C++ to request the JR3 force/torque -

sensing system to send to the computer six forces/torques along about the Cartesian x-, y-, z-axes assigned to

the base. The transmitting and receiving of data between the computer and the force/torque system is camed ‘

out through serial port.

2.4. Breast Models ; .
The breast models used in our laboratory experiments were provided by the HEALTH EDCO, a Division of

WRS Group, Inc. The models were made from BIOLIKETM synthetic tissue that feels just like a real breast

[1]. Two models were used in our tests to collect preliminary data. Each of them has 5 luznpst}:atsmulate
easy- and hard-to-find breast tumors with various sizes and depths at different locations. One of the models

is the geriatric breast that is ideally shaped to address the special problems of older women. ‘The geriatric
model simulates the natural stretching of the tissue with age. Figure 6 show the distribution of simulated lumps

(lesions) in the breast model and the historical spatial distribution of the breast cancer respectively. Tt should -

be noticed that as high as 50% of breast cancers occur at the axilia area which is difficult to imaging.
2.5. Graphical User Interface 4

For both tactile documentation and interactive training, 2 graphical user interface (GUI) plays a very‘important

role of optimizing both components and examiner’s performance. In our prototype, Microsoft Visual Ct+ was

employed to implement the GUI to visually display pertinent data of the TSAP and the force/torque sensor-

Figure 7 shows the output window of the GUI that presents on-line the pressure distribution acquired by the

TSAP, the time response of the 6-DOF force/torque applied by the examiner. The user can interact with the.

TMD functions through the designed menu
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Figure 6. Breast model with simulated lumps (left); and the spatial distribution of the locations of breast cancer
occurance (right). : ' .

Figure 7. Graphical user interface of the TMD prototype including 6-DOF force/torque feedback (upper left), tactile
imaging control menu (upper right), visual display of pressure distribution (lower left), and 3D mesh contour map based

localization (lower right).
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3. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the TMD system for the characterization and documentation of
detected lumps, intensive experiments have been conducted to test the sensitivity and reproducibility of the

performance of the system.

During the experiments conducted below, the forces/torques applied by the human examiner during the
palpation are recorded in terms of six force parameter values, ie., Fx, Fy, Fz, Mx, My, Mz. For the tactile
Imaging of simulated lesions, the TSAP is used to acquire various tactile images by palpating the site after the
examiner locates the lesion by initial hand palpation. Since the relationships between the tactile images and -
lesion characteristics are expected to be complex and nonlinear, we believe that the inverse problem (extraction
of lesion characteristics from tactile images) can be solved when sufficient tactile information is acquired. As s
result, for each of the lesions, after pushing the TSAP against the breast to achieve certain level of force, the ex-
aminer rotates the TSAP to five different orientations at each of which the information about the forces/torques
and tactile image are simultaneously recorded. ORI is the initial orientation of the TSAP after being pushed by
the examiner to certain level of force. OR2, OR3, OR4 and OR5 are the TSAP orientations after it is rotated
forward, backward, left and right, respectively.

We carry out the above procedure on two different lesions: Lesion 1 and Lesion 4 as identified in Figure 6
(left). Figure 8 shows the 3D mesh surface (left) and the shading interpolation (right) of the pressure distribution

- measured by the TSAP for Lesion 1, with the top row for OR1 and the following rows for OR2, OR3, OR4 and

ORS5. Figure 9 shows the results obtained for Lesion 4 presented in the same manner as Figure 8. The values
of forces/torques for the experiments conducted for Lesions 1 and 4 are tabulated in Table 1.

Table 1: Results force/torque measurement for Lesion 1 and 4.

Lesion TSAP Orientation __6DOF Force & Torque (Ib./in.Ib.)
F2F, F. M, M, M,
OR1 -0.89 044 -013 -258 -10.80 0.50
OR2 =234 250 -0.10 -5.26 -22.02 1.59
OR3 169 296 -003 -2.28 -1050 3.57
1 OR4 320 038 027 040 040 209
' OR5 -1.83 038 -0.03 -238 -932 199
OR1 =317 177 -016 558 2550 -0.89
OR2 -208 248 -0.22 437 1835 178
. OR3 881 -0.03 -0.09 198 1071 0.20
4 OR4 -367 -172 0.00 218 1001 0.39
- OR5 477 402 -034 318 1081 397

Before conducting the experiment on Lesion 1 and Lesion 4, we apply the same procedure on a location
at which there exists no lesion. The resulting display shows no peak. Examining the graphical displays in

‘Figure 8 and 9 in comparison with that of the case of 1o lesion, we notice that a peak consistently occurs in the

display. We can draw a preliminary conclusion here that a peak in the graphical display indicates the existence
of a lesion. In addition, the force and torque that we recorded in conjunction with the tactile sensing during
Ppalpation can give us the information about the contact location and how much force that we apply on the hard
lump in the breast model. ‘ L

- 4. DISCUSSION AND CONCLUSION

This paper has concerned with the detection of lumps in breast palpatiozi using a tactile mapping device (TMD)
system. It presented the main components of the TMD and explained their operations. Experiments were
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- Figure 8: Display of experimental results for lesion 1.

conducted on a breast model to detect two different types of lumps. Experimental data showed that the peak in
the display of pressure distribution of the TMD indicated the presence of 2 lump. The results demonstrated the
feasibility of the TMD for improving breast examination technique in diagnosis, documentation, and training. In
particular, the results have shown that new tactile mapping technology can quantitatively measure the location
and applied forces in breast lumps; the prototype interactive training program can track finger motions and
applied forces during breast palpation in which on-line feedback can help the training to better understand the
search strategy and adjust force level to increase the sensitivity. With the proven power of nonlinear signal
processing using both convolution neural networks (CNN) and multi-layer perceptron (MLP), we expect that
the tactile parameters associated with the lesions (i.e., the size and depth of the lesion) can be estimated more
accurately than those by the conventional approaches using the first principle of engineering.”
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Mixture of principal axes registration: a neural computation
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ABSTRACT

Non-rigid image registration is a prerequisite for many medical imaging applications such as change analysis in
image-based diagnosis and therapy assessment. Nonlinear interpolation methods may be used to recover the
deformation if the correspondence of the extracted feature points is available. However, it may be very difficult
to establish such correspondence at an initial stage when confronted with large and complex deformation. In
this paper, a mixture of principal axes registration (mPAR) is proposed to tackle the correspondence problem
using a 'neural computation method. The feature is to align two point sets without needing to establish the
explicit point correspondence.- The mPAR aligns two point sets by minimizing the relative entropy between
their probability distributions resulting in a maximum likelihood estimate of the transformation mixture. The
neural computation for the mPAR is developed using a committee machine to obtain a mixture of piece-wise
rigid registrations. The complete registration process consists of two steps: (1) using the mPAR to establish
an improved point correspondence and (2) using a multilayer perceptron (MLP) neural network to recover
the nonlinear deformation. The mPAR method has been applied to register a contrast-enhanced magnetic
resonance (MR) image sequece. The experimental results show that our method not only improves the point
correspondence but also results in a desirable error-resilience property for control point selection errors.

Keywords: M ixture of Principal Axes Registration, Non-Rigid Image Registration, Change Analysis, Neural
Computation, Multilayer Perceptron, Control Points Selection.

) 1. INTRODUCTION
Image registration is an essential step for many medical image analysis applications such as image fusion, quan-~
titative change analysis in image-based diagnosis and therapy assessment.»? For example, medical diagnosis
often benefits from the complementary information in images of different modalities. Multimodality imaging of
breast is regarded as a powerful diagnostic tool. In breast imaging, different modalities offer different diagnostic
information. In order to fuse the complementary information, the alignment of the images is the first step to
be performed to overcome the complication of misregistrations caused by patient motion and physical change.
Image registration consists of aligning the images by scaling, rotating, and translating, one or both images so
that they are of the same size and have the same orientation and location. Mathematically, image registration
can be formulated as to estimate the transformational geometry from two feature point sets, i.e., to recover a
matrix representation requiring a set of correspondence matches between features in the two coordinate sys-
tem. Arun ef. ol.3 present an algorithm for finding the least-squares solution of the transformation matrix,
which is based on the decoupling of translation and rotation and the singular value decomposition (SVD) of a
Cross-covariance matrix.
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The major limitation of the above method is twofold: (1) while feature matching methods can give quite
accurate solutions, obtaining correct correspondences of features is a hard problem, especially in the case of
images acquired using different modalities or from inter-subjects; and (2) a rigidity assumption is heuristically
imposed that is usually not valid in medical images with non-rigid human organs such as breast. %4 Qne
popular method that does not require feature correspondence is the principal axes registration (PAR) method.!
The PAR method is based on the relatively stable geometric properties of image features, ie., the geometric
information contained in these stable image features is often sufficient to determine the transformation between
images.?2 However, the PAR method results in a rigid body transform with scaling coefficients. The transform

- works effectively if the objects to be registered have orientation differences within a certain limit, dependent on
the objects’ shape and if their shapes are well matched. If their orientations are too different, the transform
may arrive at the wrong rotation angle due to problems with object symmetry. Once again, the method cannot
handle the cases with non-rigid objects.

In this paper, we present a neural computation based non-rigid image registration method using piece-
wise rigid transformation. In other words, rather than using a single transformation matrix that gives rise
to a large registration error, we attempt to interpolatively apply a mixture of transformations to minimize the
registration error. By generalizing PAR to a mixture of principal axes registration (mPAR) scheme, the mixture
is fit using the expectation-maximization (EM) algorithm by performing a soft partitioning of the data set. The
registration process consists of two steps: (1) using the mPAR to establish an improved point correspondence
and (2) using a multilayer perceptron (MLP) neural network to recover nonlinear deformation based on the
established point correspondence. A finite mixture of transformations is obtained through aligning the two
point sets by minimizing the relative entropy between their probability distributions resulting in a maximum
likelihood estimate of the transformation matrix. Specifically, a probabilistic adaptive principal components
extraction (PAPEX) algorithm® is developed to estimate the transformation matrix using the orthogonal set
of eigenvalues and eigenvectors of the auto covariance matrix. A committee machine is then used to combine
multiple transformations for the recovery of the total transformational geometry of the non-rigid object. An
accurate point correspondence can be established by applying the finite mixture of transformations to the two
point sets. Finally, an MLP neural network is adopted to recover the nonlinear deformation by the polynomial
mapping function based on the point correspondence. B :

. The mPAR method has been applied to register a contrast-enhanced breast magnetic resonance image (MRI)
sequence. With MRI, the breast is usually imaged functionally using a contrast agent. The rate of uptake of
the contrast agent is used to characterize a given breast tissue. This rate is studied by observing the change in
gray level of the tissue at several instants of time after injection of the agent. However, the non-rigid nature
of breast tissue almost guarantees that these different images would be misregistered. To study the uptake
process effectively and to also make a quantitative estimate of change in uptake, it would be necessary to align
or register these different images. Image registration is thus an important problem. To align these different
images, we first extract the control objects of the image using a stochastic segmentation method. With the
extracted control objects, we then apply our mPAR method to recover the total transformational geometry
of the contrast-enhanced MRI. An accurate point correspondence can be established by applying the mixture
of transformations to the two point sets. As a final step, we apply an MLP neural network to recover the
nonlinear deformation in the form of the polynomial transformation using the established point correspondence.
The experimental results shows that the image differencing after registering two images by applying our mPAR
method can greatly improve the accuracy in extraction of the enhanced area compared to that of without any

registration.

L 2. THEORY AND METHOD
Assume two 3-D data point sets {p:a} and {pis}, i =1,2, ..., N, are related by
pis=Rp; s +T+ Ni Q)
where R is a rotation matrix, T a translation vector, and N; a noise vector. Given {pi4} and {p;z}, Arun

et. al. present an algorithm for finding the least-squares solution of R and T by decoupling translation and
Totation and using the singular value decomposition (SVD) of a 3 x 3 cross-covariance matrix.3
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Suggested by information theory,® we can consider the feature point sets in two images as two separate
realizations of the same random source. Hence, to align two sets of feature points, we do not need to establish
point correspondences to extract the transformation matrix. Instead, we can aligning the two point sets by
minimizing the relative entropy between their probability distributions. In other words, if Pfp.y denotes the
distribution of the feature point set in an image, we have the simple probabilistic relationship to describe the
transformation between two point sets:

Pipis} = Prp,+T} + € @

where ¢ is the noise component. Since the probability distributions can be computed independently on each
image without the need to establish feature correspondences, and given the two distributions of the control
point sets in the two images, we can recover the transformation matrix in a simple fashion,? as we now sketch.

2.1. Registration

For observation of the distributions, we can estimate R and T by minimizing the relative entropy (Kullback-
Leibler distance) between Pyp,. 1 and P(gp,_, +1). The least relative entropy estimator is defined as

mgﬁigﬂ(P{pjgilfP{apm+T}) )

where D denotes the relative entrdpy measure. Following the same strategy to decouple translation and rotation
as in,® we can define a new data point by q;4 = Pis —P% and q;p = p;z — p$, where p% and p are the
centroids of {p;s} and {p;z}, respectively. Then the optimal geometric transformations, R and T, can be
computed as

R ‘= UpHUY @
T = p}—RpY | (5)

where the superscript ¢ denotes matrix transposition, U4 and Up are 3 x 3 orthonormal matrices, and H
: . is a 3 x 3 diagonal matrix with element A, = V' AmB/Ama. Note that the transformation U consists of the
~ orthonormal set of eigenvectors and A, is the squared root of the eigenvalues A, of the auto-covariance matrix

Cform=1,2,3 and for {p;a} and {p;5}, respectively. ' : .
However, because of its global linearity, the application of PAR is somewhat limited to deal with rigid
objects only.® An alternative paradigm is to model a multimodal control point set with a collection of local
. : linear models. The method is a two-stage procedure: a soft partitioning of the data set followed by estimation
of the principal axes within each partition.” Recently there has been considerable success in using standard
: finite normal mixture (SFNM) to model the distribution of a multimodal data set. The association of a SFNM
distribution with PAR offers the possibility of being able to register two images through a mixture of probabilistic
principal axes transformations.” Assume that there are Ky control point clusters, where each control point
cluster defines a transformation {R,Tx}. For a point pn4, its new locations corresponding to each of the
transformations are pnx = Rxpna + Tk for k=1, ..., Ko. Further assume that the control point set defines a

SFNM distribution

& ‘

£(ps) = mrg(p:lpa, Ci) (6)
B=1 ‘

where g is the Gaussian kernel with mean vector u, and auto-covariance matrix Cx, and 7y is the mixing factor

proportional to the number of control points in cluster k. For each of the control point sets {pia} and {p:5},

the mixture distribution is fit using the expectation-maximization (EM) algorithm. In principle, the E step

involves assigning to the linear models responsibilities, i.e., the posterior Bayesian probability, from the control

points; the M step involves re-estimating the parameters of the linear models from the above assignment.”

Thus the statistical membership of point p,4 belonging to each of the control point clusters can be derived
by ’

Znie = P(R, Telpna) = mg(ﬁ*ﬁihf’cm | ™
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ie., the posterior probability of {Ry, T} given pna. We can define the mPAR transformation as

Ko :
Pn = ) ZmPm ®
k=1
S Tea(Pralbtia; Cra) |
S LT Pt ©)
k=1

where {Ryg, Tx} is determined based on {u;4, Cra}tand {u:p, Cxa}, which we have estimated in the previous
step using the EM algorithm. This philosophy for recovering transformational geometry of the non-rigid objects
is similar in spirit to the divide-and-conguer principle,’ under which the relative entropy between the two point
sets reaches its minimum

argRT,l%g D(P{p,-a}”P{Zf:l zik(RkpiA+Tk)}) (10)

both globally and locally. - ‘

Based on a mixture of probabilistic principal axes transformations, the next section describes a neural
computation using a committee machine ‘to obtain a mixture of piece-wise rigid registrations, which gives a
reliable point correspondence using multiple extracted object control points.

2.2. Neural Computation _

There are many numerical techniques to perform the maximum likelihood estimation. The most popular method
is the EM algorithm. The EM algorithm first calculates the posterior Bayesian probabilities of the data through
the data observations and the current parameter estimates (E-Step) and then updates parameter estimates
(M-Step). The procedure cycles back and forth between these two steps. A neural network interpretation of
the EM algorithm is given in.® Because of its reputation of being slow in which new information acquired in
the expectation step is not used immediately, on-line versions of the EM algorithm are proposed for large-scale
sequential learning. We adopt a fully unsupervised and incremental stochastic learning algorithm to implement
the EM algorithm. The scheme provides winner-takes-in probability (Bayesian “soft”) splits of the comtrol
points, hence allowing the data to contribute simultaneously to multiple clusters. The incremental stochastic

learning EM algorithm can be described as follows:

E — Step ; ) (i
_ Ptpu ), €0) (1)
Lirl)e = G) ,.(5) Gy
FlPiralmy” i’ CL7)
M — Step : '
: “5:4-1) = pf) +a(i)(Pit1 — #g))z(iﬂ)k’ 12)
Ci* = Cf +5(3)[(pesr — ) (Pivs — )T — CPlasapn , - @3
i+l i J 1

for k= 1,..., Ky and for {pia} and {pis}, respectively. In the above equations, a(i) and b(i) are introduced-
as the learning rates that converge to zero, ensuring unbiased estimates after convergence. This procedure is
termed as neural computation of the EM algorithm. At each complete cycle of the algorithm, we first use
“old” set of parameter values to determine the posterior probabilities z(;+1)x- These posterior probabilities are

then used to obtain “new” values 'n‘,(:"'l) , ufj’*’l), Cf:"'l). The algorithm cycles back and forth until the value of
relative entropy between the data histogram and mixture model reaches its minimum

arg w:ﬂ;lfck D(Pyp Il f(ps)) (15)

K

926 Proc. SPIE Vol. 4684



for {pis} and {p;z}, respectively. o

With a soft partitioning of the data set using Eqs. (11-14), control points will now effectively belong to
more than one cluster spatially. Thus, the effective input values are py = Za(pi — py) for an independent
registration transformation % in the committee machine.® We then extend an adaptive principal components
extraction (APEX) algorithm to a probabilistic version, i.e., PAPEX,'® to determine Uy for {pis} and {piz},
respectively, summarized as follows. : : '

1. Initialize the feedforward weight vector u,; for m = 1,2,3, and the feedback weight vector a,; to small
random values for m = 2,3, at time ¢ = 1. Assign a small positive value to the léarning rate parameter 7.

2. Set m=1, and for i = 1,2, ..., compute

=~
-

k() = ufe(Dzaelpi — ) (16)

ure(d+1) = we(d) + nlya ()21 (0 — ) ~ 1 (i)ure (i) an
For large i we have u;(7) — wyx, where uy;, is the eigenvector associated with the largest eigenvalue of
the cluster k, and A = & S 42, (4).

3. Set m =2, and for i = 1,2, ..., compute

VY{m—i)k (i} = Iylk{i)s Yok (3): Rt y{m—l}}c (g)] T k (18)

Ymie (1) = U (D)zix (P: — 12) + a5 ()Y (m—1)2 (4) (19)
Wk (1 + 1) = i (8) + 1y ()220 (P — ) — V20t (8) s (4))] - (20)
A (1 + 1) = amk () — N[Ymk ()Y (m-1)% (5) + Yoose ())am(5)] 1)

For large i we have wuox(i) — ugx, where ugy is the eigenvector associated with the second largest
eigenvalue of the cluster k, and dox = £ SN 92, (4). -

4. Set m = 3, go to step 3. For large i we have ug(4) — ug, where ugy is the eigenvector associated with
the third largest eigenvalue of the cluster &, and Asz = % S, 43,(4). The next step is to introduce a
committee machine for combining multiple transformations in a mixture fashion. - -

Consider the modular network nature of Eq. (8), we can easily realize that it is a mixture of local expert
model. Each local expert performs supervised learning through our PAPEX algorithm, and the individual
responses of the experts are nonlinearly combined by means of a single gating network. This is our committee
machine to combine multiple transformations to form the total transformational geometry of the non-rigid
object. The neural computation of a committee machine can be achieved by distributing the learning tasks
among a number of experts, which in turn partitioning the input space into a set of subspaces. The experts
are in theory performing supervised learning in that the individual outputs are combined to model the desired
response. There is, however, a sense in which the experts are also performing self-organized learning; that is,
they self organize to find a good partitioning of the input space so that each expert does well at modeling its own
subspace, and as a whole group they model the input space Jointly. It is assume here that the different experts
work best in different regions of the input space in accordance with the probabilistic generative model. In our
case, the effective input values are pi = 2i(p; — p;) for an independent registration transformation k in the
networks. A committee machine consists of & supervised modules, with 4 soft partitioning of the data set using
EM algorithm and the function PAPEX to determine the transformation of the orthogonal set of eigenvalues
and eigenvectors of the auto-covariance matrix among the networks. The output of an integrating unit in our
committee machine is a transformational matrix of the image pair.

Based on those carrespondeﬁces established by applying the transformational matrix between the two images,
the control points of two images are obtained. The final step is to recover the deformation of the object by
calculating the polynomial transformation using piece-wise interpolation. The goal is to fine tune the alignment
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achieved in the initial registration by considering the object as a non-rigid body. This allows for the consideration
of the non-rigid deformation between the images. The polynomial based transform such as thin-plate spline
(TPS) has been shown to be able to handle non-rigid deformations of the object. In our case, we develop a
three-layer MLP neural network to acquire the polynomial transform, where the input nodes are fed with the
coordinates of the corresponding control points of the image. The MLP is trained by the corresponding control
point pairs as its inputs and outputs using the backpropagation algorithm. The three-layer MLP converges to
a polynomial transform that captures the relationship between corresponding control point pairs. The MLP
neural network further recovers the underlying non-linear deformation between two images by interpolating
the learned relationship between corresponding control point pairs. Finally, by applying the MLP polynomial
transform to all the pixels in an image followed by a bilinear grey level mterpolatmn method, we can obtain all
the pixel intensity values in the image that is our final registered image.

In order to apply our registration method, we need to establish the corresponding objects between two
images. We have developed a stochastic segmentation method to extract the corresponding objects in both
images. The mPAR uses these corresponding objects to combine multiple transforms recovered by PAR in a
mixture form. After the mPAR step, we can easily establish control point correspondence where control points
are selected corner points on the boundaries of extracted corresponding objects. Next, we will describe our

segmentation method for control point extraction.

2.3. Segmentation

Assume that each pixel in the image can be decomposed into pixel images = and context image I. By ignoring
information regarding the spatial ordering of pixels, we can treat context images as random variables and describe
them using a multinomial distribution with unknown parameters 7y, k = 1,..., K, which can be interpreted as
a prior probability of pixel labels determined by the global context information. In particular, based on the
statistical properties of pixel images, where pixel image is defined as the observed gray level associated with the
pixel, a SFNM distribution is justified to model the image histogram by determining the optimal parameters
with respect to a distance measure of a sum of the following general form fr(z) = TK., meg(zluy, 02) with

K R . 2
- , 2y _ _1 -

:4=:171'k =1, m¢ 2 0, and g(z|uk, 0%) = mm(—%’—) where P and o are the mean and variance of

the k** Gaussian kernel, and 7 is the global regularization parameter. We use X to denote the number of

Gaussian components and 7 to denote the parameter vector. This tissue quantification is achieved through
three completely unsupervised steps: (1) parameter initialization by optimal histogram quantization, (2) model
estimation by histogram based fast EM algorithm, and (3) model selection by minimum description length -
(MDL) criterion. It is shown that the SFNM model converges to the true distribution when the pixel i image are
asymptotically independent.”

After we obtain the optimal parameters for all components, we use a multiple thresholding procedure for
initializing image segmentation based on maximum likelihood (ML) principle, which is followed by contextual
Bayes relaxation labeling (CBRL) algorithm to obtain a consistent labeling solution based on localized SFNM
formulation for improving initial segmentation by using neighborhood text regularities. We define the component
in localized SFNM by the support function:

- 1 (z- /"k)
S;(k) = 22
(k) = nf——— exp(~ ) (22
where 7r,(:) is the local conditional prior of regions, the support function S;(k) is a function of the component
(tissue type) k. Then tissue segmentation is interpreted as the satisfaction of a system of inequalities as follows
Si(l;) > Si(k) for all k and for i =1, ..., N, where [;,i = 1,..., N is the context images, and a consistent labeling
is defined as the one having maxtmu.m support at each pxxel simultaneously. We further define the average

local consistency measure A(l) = E > L(li, k)Si(k) to link consistent labeling to global optimization.®
=1
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Figure 2: Extracted control points in a pre-contrast image (left) and a post-contrast image (right).

3. RESULT AND DISCUSSION

We applied our mPAR, method to register pre- and post-contrast MR, breast images. A 3-D breast MRI scan is
acquired prior to the injection of contrast agent, followed by a sequence of 3-D breast MRI scan after the agent
has been applied. The goal of image registration for this study is to relate any point in the post-contrast sequence
to the pre-contrast reference image. The first step of our method is try to correct the global misalignment. by
performed a pre-registration step using the PAR method. The PAR, method uses the extracted skinline as the
control objects to globally align images. Since we do not want to change any contents in the post-contrast image,
we decide to apply our registration method to the pre-contrast image. After we performed the pre-registration
step, we applied our segmentation method to extract the control objects (fibroglandular tissue) in both pre-
and post-contrast images. Figure 1 shows the segmented regions of fibroglandular tissue that will be used in
our mPAR method as the corresponding control objects for non-rigid registration. :

Ouwr mPAR method treats the regions of fibroglandular tissue as multiple objects that can be obtained
using the EM soft-partitioning algorithm. We then apply the PAPEX algorithm to determine transformation
matrices between all the corresponding objects. A committee machine is then used to combine individual
transforms to form a total transformational geometry of the non-rigid object, i.e., resulting in a mixture of
individual transforms. After we apply the mixture transformation matrix to pre-contrast image, all the objects
(Le., the regions of fibroglandular tissue) are well aligned. We then apply a corner detection algorithm to
extract those high-curvature points on the boundaries of fibroglandular tissue to serve as control points for the
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Figure 3. A pair of a contrast-enhanced breast MR images (left: pre-contrast image with globa.l alignment based on
PAR method; right: post contrast image).

Figure 4. A pre-contrast image (left) and a registered post-contrast (right) image using the mPAR registration method.

MLP. Figure 2 shown the extracted control points in both pre- and post-contrast images. The control point
correspondence between pre- and post-contrast images can be conveniently established using a simple correlation
method. Finally, an MLP neural network is trained using the corresponding control point pairs to recover the
nonlinear deformation between two images. The non-linear deformation is represented by a polynomial mapping
function that is interpolated by the neural network based on the control point correspondence. Figure 4 shows
a registered pre- and post-contrast image pair using our non-rigid registration method - the mPAR method.
To relate a post-contrast image to a pre-contrast image, we simple do the image difference between the
post-contrast image and the pre-contrast image. The difference results are the enhanced area of fibroglandular
tissue, i.e., the area that has been highlighted by the contrast agent. Figure 5 (left) shows the difference images
between the post-contrast image and registered pre-contrast image. As a comparison, we also show the difference
image of the post-contrast image and unregistered (original) pre-contrast image in Figure 5 (right), where false
regions of the enhanced area of fibroglandular tissue can be observed due to the misalignment between pre-
and post contrast images. The results demonstrate that the mPAR can successfully recover the deformation
between pre- and post-contrast images so the enhanced area can be accurately extracted by image differencing

between the post-contrast image and registered pre-contrast image.
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Figure 5. Difference images of the enha.nced area {ieft difference image with our mPAR registration; right: difference
image without registration).

4. CONCLUSION

In this paper, we have prmted the theoretical concepts and methods of a neural computation based non-rigid
image registration method - the mPAR method. The approach uses a committee machine to recover the total
transformational geometry of the non-rigid object. The committee machine combines multiple rigid transforms
in a finite mixture registration scheme. Finite mixture transform combination is a novel technique to combine
multiple transforms contained in 2 single image, which yields a lower mean square error (MSE) than that of using
any local transform alone. In other word, the mPAR, method results in a smooth image while local transforms
yield an image containing discontinuities on transform boundaries. In addition, the registration obtained by
the committee machine is fine tuned using the nonlinear transform recovered by a MLP network. The MLP
neural network is trained by the extracted control point pairs and converges to a polynomial transform that
captures the nonlinear deformation between two images.

We have applied our mPAR algorithm to MR breast registration pmblem. The experimental results have
demonstrated that our mPAR method can successfully recover the nonlinear deformation between images.
More importantly, our mPAR method aligns two point sets without the need of establishing explicit point
correspondence. Instead, it aligns the two point sets by minimizing the relative entropy between their probability
distributions. Furthermore, through aligning the two point sets initially by our mPAR method, we can improve
the accuracy of establishing the feature point correspondence. The MLP neural network has been introduced
to recover the deformation based on established feature point correspondence. The MLP has also resulted
in a desirable error-resilience property for control point selection errors. However, some distortion can be
observed in the final warped images. We believe that the distortion is largely caused by the errors in control
point selection and correspondence. Improvement in this portion should reduce the distortion and yield better
registration results. Finally, it is worthy noting that using neural networks in this problem has increased the
generality of this approach to allow us to improve the algorithm and adjust performance as imaging conditions

change.
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